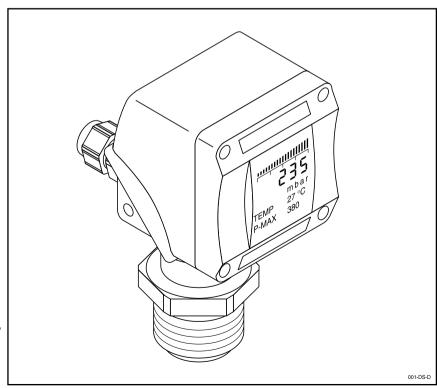


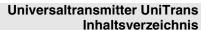
UT-10 / UT-11

Universal Transmitter for various applications	GB
Universaltransmitter für vielfältige Einsatzgebiete	D
Transmetteur unviersel pour utilisations multiples	F

WIKA Alexander Wiegand GmbH & Co. KG

Alexander-Wiegand-Straße 30 63911 Klingenberg/ Germany Tel. (+49) 93 72/132-295 Fax (+49) 93 72/132-706 E-Mail support-tronic@wika.de




Universal-Drucktransmitter
Universal Pressure Transmitter
Transmetteur de Pression Universel

UniTrans®

Betriebsanleitung / Manual / Manuel

S-Nr. 2184125.04 Ausgabedatum 16.02.04

Inhaltsverzeichnis

1	Allgemeine Sicherheitshinweise	. 3
2 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2 2.3	Produktbeschreibung Aufbau Druckaufnehmer Auswerteeinheit Anzeigeeinheit (Display) Funktion Funktionalitäten von Geräten ohne Display Funktionalitäten von Geräten mit Display Einsatzbeispiele	. 4 . 4 . 5 . 6 . 6
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Technische Daten Physikalische Eingangs-Kenngrößen Physikalische Ausgangs-Kenngrößen Konstruktiver Aufbau Hilfsenergie Umgebungsbedingungen Prozessbedingungen Typenschilder (Beispiel).	. 9 . 9 10 11 11 12
4.1 4.2 4.3 4.4 4.5	Montage Montage des Drucktransmitters Nachrüsten der Anzeigeeinheit Umbau des Gehäuses Elektrischer Anschluss Druckkompensation bei Anschluss eines Relativdrucksensors	13 13 14 15
5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6	Inbetriebnahme von Geräten ohne Anzeige Vorbereitung Die Tastatur und ihre Funktionen (nur für Geräte ohne Display) Abgleich mit Druck Abgleich des Nullpunktes Abgleich der Spanne Abgleich ohne Druck Abgleich des Nullpunkts. Abgleich der Spanne Lagekorrektur der Messzelle Einstellen der Integrationszeit (Dämpfung) Reset auf Werkseinstellung	19 20 21 21
6 6.1 6.2 6.3	Inbetriebnahme von Geräten mit Anzeige Die Anzeige (Display) Die Tastatur und ihre Funktionen. Der Parametriermodus.	22 23

Universaltransmitter UniTrans Inhaltsverzeichnis

6.4	Daten der Werkseinstellung	24
6.5	Hauptmenü	25
6.5.1	Hauptmenü: Anzeige	26
6.5.2	Hauptmenü: Abgleich (Nullpunkt und Spanne)	28
6.5.3	Hauptmenü: Ausgang	29
6.5.4	Hauptmenü: Auswertung	30
6.5.5	Hauptmenü: Sprache	31
6.5.6	Hauptmenü: Service	32
7	Fehlersuche und Service	33
8	Entsorgung	33
9	Anhang	34
9.1	Maßbilder	34
9.2	Typenschlüssel	38
9.3	Garantiebedingungen	40
9.4	Glossar	40
9.5	Referenzliste der Druckeinheiten	40

1 Allgemeine Sicherheitshinweise

Alle Anschlüsse dürfen nur im drucklosen Zustand geöffnet werden!

Beachten Sie bei allen Arbeiten an dem Drucktransmitter die nationalen Sicherheits- und Unfallverhütungsvorschriften und die nachfolgenden Sicherheitshinweise in dieser Betriebsanleitung.

Ein anderer Betrieb als der in der folgenden Anleitung beschriebene ist bestimmungswidrig und muss deshalb ausgeschlossen werden.

Können Störungen nicht beseitigt werden, ist das Gerät ausser Betrieb zu setzen und gegen versehentliche Inbetriebnahme zu schützen.

Beachten Sie unbedingt vor Montage, Inbetriebnahme und Betrieb, dass das richtige Druckmessgerät hinsichtlich Messbereich, Ausführung und aufgrund der spezifischen Messbedingungen der geeignete messstoffberührte Werkstoff (Korrosion) ausgewählt wurde.

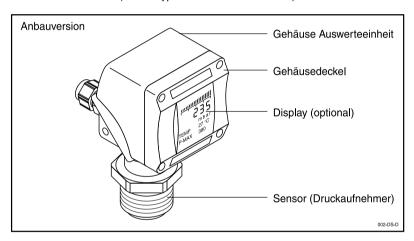
Bei Nichtbeachten entsprechender Vorschriften können schwere Körperverletzungen und/oder Sachschäden auftreten.

Bei gefährlichen Messstoffen wie z.B. Sauerstoff, Acetylen, brennbaren oder giftigen Stoffen, sowie bei Kälteanlagen, Kompressoren etc. müssen über die gesamten allgemeinen Regeln hinaus die jeweils bestehenden einschlägigen Vorschriften beachtet werden.

Messstoffreste in ausgebauten Druckmessgeräten können zur Gefährdung von Menschen, Umwelt und Einrichtung führen. Ausreichende Vorsichtsmaßnahmen sind zu ergreifen.

Reparaturen dürfen nur vom Hersteller durchgeführt werden. Eingriffe und Änderungen am Gerät sind unzulässig.

Weitere wichtige Sicherheitshinweise befinden sich in den einzelnen Abschnitten dieser Anleitung.



2 Produktbeschreibung

Der Drucktransmitter UniTrans kann sowohl in der Prozessdruckmessung als auch in der Füllstandmessung eingesetzt werden. Unterschiedliche Prozessanschlüsse, Messbereiche, Main-boards und die Displayoption bieten in ihren Kombinationen ein breites Anwendungsspektrum.

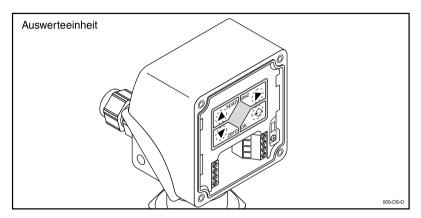
2.1 Aufbau

Der UniTrans besteht aus den Baugruppen Druckaufnehmer und Auswerteeinheit, sowie dem Gehäusedeckel mit optionalem Display. Die Baugruppen stehen in verschiedenen Varianten zur Verfügung. Durch deren Kombination entstehen verschiedene Geräteversionen (siehe "Typenschlüssel" auf Seite 38).

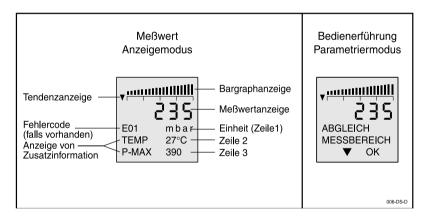
2.1.1 Druckaufnehmer

Der Druckaufnehmer beinhaltet je nach Druckbereich eine piezoresistive oder eine Dünnfilm-Messzelle (DMS). Die Messzellen sind temperaturkompensiert. Alle Messzellen sind voll verschweißt und Helium Leck geprüft. Interne Dichtungselemente sind nicht vorhanden

Weiterhin unterscheiden sich die Druckaufnehmer nach dem Messbereich und dem messstoffberührten Werkstoff. Für die unterschiedlichsten Anwendungsbedingungen stehen verschiedene Prozessanschlüsse zur Auswahl.


Die Überlastgrenze des jeweiligen Druckaufnehmers darf nicht überschritten werden!

2.1.2 Auswerteeinheit


Die im Gehäuse integrierte Auswerteeinheit enthält unter anderem die Tastatur, die zum Parametrieren des Gerätes dient. Die vier Drucktasten müssen dazu aktiviert

(entsperrt) werden. Im Normalbetrieb ist die Tastatur zum Schutz der eingegebenen-Daten und Funktionen gesperrt. Die Sperrung erfolgt automatisch, wenn 10 Minuten lang keine Taste gedrückt wird. Die Auswerteeinheit wandelt das digitalisierte Messsignal der Messeinheit in ein standardisiertes 4 ... 20 mA-Stromsignal um.

2.1.3 Anzeigeeinheit (Display)

Die Messwertanzeige verfügt über vier Stellen (7-Segment-Anzeige) + Vorzeichen. Darunter befindet sich die Zeile 1 (16-Segment-Anzeige) für Fehlercode und Einheit des Messsignals. Die Einheit kann vom Anwender selbst gewählt werden. Messwerte über 9999 können nicht korrekt angezeigt werden. Bitte beachten Sie dies bei der Wahl der Einheit (z.B. 9999 Pascal entspricht 0,09999 bar).

In Anzeigezeile 2 und Zeile 3 können weitere Zusatzinformationen angezeigt werden (16-Segment-Anzeige). Im Parametriermodus erfolgt über die Anzeigeeinheit die Bedienerführung über eine menügesteuerte Klartextanzeige.

Universaltransmitter UniTrans Produktbeschreibung

Geräte mit Display bieten eine deutlich größere Zahl an Programmier- und Auswertemöglichkeiten, z.B. Alarmverhalten, Dämpfung, Signalinvertierung, Tanklinearisierung, Servicemeldungen.

Anzeigeeinheiten können problemlos nachgerüstet werden (siehe Kapitel 4.2).

2.2 Funktion

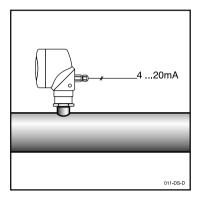
Die Funktionsweise der Signalumwandlung ist für alle Varianten gleich. Der Druckaufnehmer wandelt den anstehenden Druck in ein elektrisches Signal um. Die Mikroelektronik übernimmt die Weiterverarbeitung des Eingangssignals und gibt ein proportionales Standardsignal von 4 ... 20 mA aus.

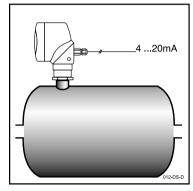
Die Display-Version erlaubt die Programmierung (Parametrierung) und Darstellung einer erweiterten Funktionalität wie z.B. Invertierung, Dämpfung, Alarmverhalten, Linearisierung.

2.2.1 Funktionalitäten von Geräten ohne Display

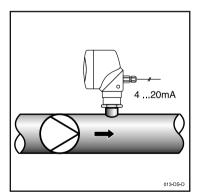
- Abgleich von Nullpunkt und Spanne mit anstehendem Druck (siehe 5.3)
- Abgleich von Nullpunkt und Spanne ohne anstehenden Druck (Trockenabgleich) (siehe 5.4)
- Einstellung der Dämpfung / Integration des Ausgangssignals 0 ... 40 s (siehe 5.5)
- Reset auf Werkseinstellung (siehe 5.6)
- Lagekorrektur der Messzelle (ab Software-Version 1.05) (siehe 5.4.3)

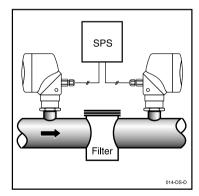
2.2.2 Funktionalitäten von Geräten mit Display


- Einheit d. Messwertes einstellb. (mbar, bar, psi, mA, %, m, mm WS, ...) (s. 6.5.1)
- Anzeige von Temperatur und Min/Max-Werten im Display (siehe 6.5.1)
- Anzeige des Nenndruckbereichs der Messzelle im Display (siehe 6.5.1)
- Abgleich Nullpunkt und Spanne (mit/ohne Druck) (siehe 6.5.2)
- Einstellung der Dämpfung/Integration des Ausgangssignals 0 ... 40 s (siehe 6.5.3)
- Invertierung des Ausgangsstromsignals (siehe 6.5.3)
- Setzen der Alarm-Ausgangsstromwerte (3,6 mA oder 21 mA) (siehe 6.5.3)
- Einstellung der Grenzen des Ausgangssignals (siehe 6.5.3)
- Offset des Ausgangsstromsignals (siehe 6.5.3)
- · Lagekorrektur der Messzelle
- Messkreistest Funktion (siehe 6.5.4)
- Resetfunktionen (siehe 6.5.4)
- Passwort-Aktivierung (siehe 6.5.4)
- Auswahl der Sprache der Display-Anzeige (siehe 6.5.5)
- Eingabe einer Tabellenfunktion zur Linearisierung des Ausgangssignals (s. 6.5.6)
- Eingabe der Mediendichte (siehe 6.5.6)

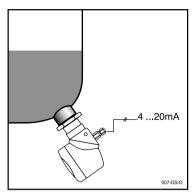

2.3 Einsatzbeispiele

Der UniTrans dient der Druckmessung in Rohren, Anlagen und Behältern. Der Druck kann je nach gewähltem Messbereich von 20 mbar bis 1000 bar gemessen werden. Je nach Messzelle wird der Druck absolut (gegen Vakuum) oder relativ (= gegen Atmosphärendruck bzw. Luftdruck) gemessen.


Darüber hinaus wird der UniTrans zur Erfassung des hydrostatischen Drucks in Behältern mit Flüssigkeiten (Füllstandmessung) eingesetzt.


Prozessdruckmessung: Messung von Drücken von Flüssigkeiten oder Gasen in Rohrleitungen

Prozessdruckmessung: Behälterdruckmessung


Prozessdruckmessung: z.B. hinter Förderpumpen zur Prozesssteuerung oder Überwachung der Pumpenfunktion


Prozessdruckmessung: z.B. vor und nach Filter. Differenzdruckmessung zwecks Überwachung der Funktion bzw. des Verschmutzungsgrades der Filter. Die beiden Ausgangssignale werden auf einer SPS oder einem Nachschaltgerät verarbeitet.

Universaltransmitter UniTrans Produktbeschreibung

Füllstandmessung: Anbauversion (z.B. mit frontbündiger Membran)

Füllstandmessung:
Anbauversion, Gesamtdruckmessung
und Messung des überlagerten Druckes
über je einen Drucktransmitter. Die Auswertung und Differenzbildung der beiden
Messsignale sind über SPS oder geeignetes Nachschaltgerät realisiert.

3 Technische Daten

3.1 Physikalische Eingangs-Kenngrößen

		/ Überlastgrenze	/ Berstdruck
Druckmessbereiche	0 0,4 bar	2	2,4
(auch in Absolutdruck erhältlich)	0 1,6 bar	10	12
	0 6 bar	35	42
	0 16 bar	80	96
	0 40 bar	80	400
	0 100 bar	200	800
	0 250 bar	500	1200
	0 600 bar	1200	24001)
	0 1.000 bar	1500	3000
	0 1.600 bar	2000	4000
	0 2.500 bar	3000	5000
	0 4.000 bar	4400	7000
	-1 0 bar *	2	2,4
	-1 +0,6 bar*	10	12
	-1 +3 bar*	35	42
	-1 +5 bar*	35	42
	-1 +15 bar*	80	96
	*nur Relativdrud	ck	
	Max. Nenndruc	Max. Nenndruck nicht überschreiten!	
	1) bei frontbündiger Ausführung: Der Tabellenwert gilt aus-		
	schließlich bei Abdichtun Sechskant. Andernfalls		erhalb vom

3.2 Physikalische Ausgangs-Kenngrößen

Ausgangssignal	4 20 mA
Kennlinienabweichung KA [% d. Spanne] (Linearität, einschl.Hysterese u. Wiederholbarkeit)	\leq 0,10 bei Messbereichen \leq 1000 bar \leq 0,3 bei Messbereichen > 1000 bar
Verhalten bei Turn down (1:k) bis Turn down 1 : 5 bei Turn down 1 : 5 bis 1 : 20	keine Änderung der KA die KA ist mit dem Faktor (Turn down / 5) zu multiplizieren Beispiel für TD=1:15 (k=15) KA = 0,10 * (15/5) = 0,3
Gesamtfehler (bei +10 +40 °C)	≤ 0,15 % der Spanne (Grenzpunkteinstellung) < 0,60 % der Spanne bei Messbereichen > 1000 bar
Bürde	$R_A \le (U_B-12 \text{ V}) / 0.023 \text{ A}$ (mit R_A in Ohm und U_B in Volt)

Universaltransmitter UniTrans Technische Daten

Ausfallsignal	3,6 mA oder 21 mA, programmierbar
Integrationszeit	0 s, 1 s, 5 s, 20 s, 40 s, programmierbar
Einstellbereich der Messspanne	bis Turn down 1 : 20
Integrierter Überspannungsschutz	optional
Nullpunktanhebung	-2,5 99 %

3.3 Konstruktiver Aufbau

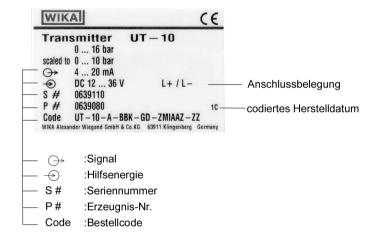
Druckanschluss	
Typ UT-10 G 1/2 B	nach DIN 16288
1yp 01-10 G 1/2 B	
MACHA	(1/2 NPT)
IVI 16 X 1	,5 innen mit Dichtkonus
	ab 1600 bar
3/8-24 U	NF LH außen
	ab 1600 bar
1/4"-28 \	JNF LH außen M 250-C
	ab 1600 bar
Typ UT-11 G 1B	frontbündige Membrane
	mit O-Ring (Bereiche:
	0 0,4 bis 0 1,6 bar)
G 1/2 B	frontbündige Membrane
	mit O-Ring (Bereiche:
	0 6 bis 0 600 bar)
G 1 1/2	frontbündige Membrane
0	mit O-Ring (Bereiche:
	0 0,4 bis 0 16 bar)
Typ UT-11 gem. EHEDG G 1	frontbündige Membrane
Typ 01-11 geni. Enebo	mit O-Ring (Bereiche:
	3 \
	00,4 bis 016 bar)
G 1	frontbündige Membrane
	mit O-Ring u. Kühlstrecke
	(Bereiche:00,4 bis 016
	bar)

Werkstoffe	
Gehäuse	hochbeständiger, glasfaserverstärkter Kunststoff (PBT); optional Aluminium
Druckanschl./Membr (UT-10)	CrNi-Stahl 1.4571 und 2.4711
Druckanschl./Membr. (UT-11)	CrNi-Stahl 1.4571 und O-Ring: NBR {FPM/FKM oder EPDM}; {Hastelloy C4}
Druckanschl./Membr. (UT-11 gem. EHEDG)	CrNi-Stahl 1.4435
interne Übertragungsflüssigkeit	Standard {Halocarbonöl für Sauerstoff- Ausführungen}; {FDA-zugelassen}
elektrischer Anschluss nach EN 60 529/ IEC529	Kabelverschraubung M 20 x 1,5 mit innenliegendem Klemmblock (siehe 4.4) Rundsteckverbinder M12x1, 4-polig (Pinbelegung: 1+ 3-) [3/4" NPT Conduit innen, nur mit Aluminiumgehäuse]
elektrische Schutzarten	Verpolungsschutz, Überspannungsschutz, Kurzschlussschutz

3.4 Hilfsenergie

Versorgungsspannung 12 36 V DC

3.5 Umgebungsbedingungen


Umgebungstemperatur	– 40 °C + 85 °C (– 20 °C 70 °C mit Anzeige)
Lagertemperatur	– 40 °C + 85 °C (– 35 °C 80 °C mit Anzeige)
Klimaklasse	D nach DIN IEC 654-1
Schutzart nach EN 60 529 / IEC 529	IP 65 bei Kunststoff-Gehäuse IP 67 bei Aluminium-Gehäuse
CE-Kennzeichen	89/336/EWG Störemission und Störfestigkeit nach EN 61 326 (erfüllt auch NAMUR NE 21) 97/23/EG Druckgeräterichtlinie (Modul H)

3.6 Prozessbedingungen

Medientemperaturen	
G 1 1/2	– 30 °C + 105 °C
	(bis zu 30 min 140 °C bei Umgebungs-
	temperatur < 50 °C
G 1 gem. EHEDG mit Kühlstrecke	-30 °C + 150 °C

3.7 Typenschilder (Beispiel)

4 Montage

Für das Errichten/Betreiben sind die Vorschriften gemäß ElexV und des Gerätesicherheitsgesetzes, sowie die allgemein anerkannten Regeln der Technik und diese Betriebsanleitung maßgebend.

4.1 Montage des Drucktransmitters

Die Membran des Druckmittlers darf nicht mit harten oder spitzen Gegenständen berührt werden.

Montage mit Einschweißstutzen:

- Fügen Sie ein Passstück (Blindstopfen) in den Einschweißstutzen ein.
- Schweißen Sie den Einschweißstutzen in die Behälterwand/Rohrwand ein (Segmentschweißverfahren).
- Entfernen Sie das Passstück.
- Schrauben Sie den Drucktransmitter ein.

4.2 Nachrüsten der Anzeigeeinheit


Das Nachrüsten der Anzeigeeinheit ist jederzeit problemlos durchführbar.

- Schrauben Sie den Gehäusedeckel und das zugehörige Halteseil ab.
- Montieren Sie das Halteseil der Anzeigeeinheit an gleicher Stelle.
- Stecken Sie den Stecker der Anzeigeeinheit in die zugehörige Buchse.

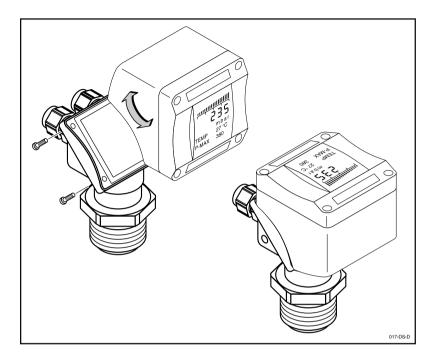
Achten Sie beim Aufsetzen der Anzeigeeinheit darauf, dass Versorgungskabel und Halteseil weder geknickt noch eingeklemmt werden.

- Die Anzeigeeinheit kann jeweils um 90° gedreht aufgeschraubt werden.
- · Schrauben Sie die Anzeigeeinheit fest.

Danach ist die volle Funktionalität des Drucktransmitters mit Anzeigeeinheit parametrierbar. Nach Abnehmen der Anzeigeeinheit bleiben die eingestellten Parametrierungen erhalten.

Die Anzeigeeinheit ist um ca. 300° drehbar, so dass das Ablesen bei unterschiedlichen Einbaugegebenheiten möglich ist. Zum Parametrieren kann der Gehäusedeckel mit eingebautem Display versetzt am Gehäuse montiert werden.

4.3 Umbau des Gehäuses

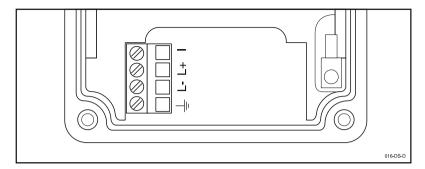

Um bei waagerechtem Einbau des Drucktransmitters das Display auch von oben ablesen zu können, dreht man das Gehäuse der Anzeigeeinheit.

- Lösen Sie die 4 Innen-Sechskant-Schrauben.
- Heben Sie das Gehäuse mit der Anzeigeeinheit leicht an.
- Drehen Sie das Gehäuse vorsichtig um 180°.
- · Befestigen Sie die Schrauben wieder.

Achten Sie beim Festziehen der 4 Innensechskantschrauben auf ausreichend festen Sitz der Schrauben, damit die Dichtigkeit des Gerätes gewährleistet ist.

4.4 Elektrischer Anschluss

Beachten Sie die landesspezifischen Installationsvorschriften (Deutschland: VDE-Norm).


Die Klemmenspannung darf 36 V nicht überschreiten.

Die Versorgungsspannung liegt zwischen 12 und 36 V Gleichspannung. Versorgungsspannung und Ausgangssignal werden über ein zweiadriges Anschlusskabel geleitet (Kabelaußendurchmesser max. 12 mm, max. Adernquerschnitt 2,5 mm²) und entsprechend der Anschlussbelegung angeschlossen.

Die Bereitstellung der Hilfsenergie kann durch ein Netzteil, ein Transmitterspeisegerät oder über SPS-Anschluss erfolgen.

Bei Gefahr von Überspannungen wird die Gerätevariante mit integriertem Überspannungsschutz empfohlen.

Klemmenbelegung

- ⊥ Masse
- L- Minus-Versorgung (zum Anschluss der negativen Signalleitung)
- L+ Plus-Versorgung (zum Anschluss der positiven Signalleitung)
- I Testkreis; Strommessgerät zwischen Klemmen L+ und I anschließen

Um die EMV-Festigkeit zu gewährleisten muss der Masseanschluss auf Erde geführt werden.

4.5 Druckkompensation bei Anschluss eines Relativdrucksensors

Die Kompensation des atmosphärischen Drucks wird in Schutzart IP 65 über eine integrierte Goretex-Membran realisiert.

Für Schutzart IP 67 übernimmt ein Spezialkabel mit Kapillare zur Relativdruckbelüftung diese Aufgabe.

5 Inbetriebnahme von Geräten ohne Anzeige

5.1 Vorbereitung

Das Gerät kann in ein- und ausgebautem Zustand parametriert werden.

- Schließen Sie ein Strommessgerät am Ausgang des (zwischen Klemmen I und L+) Gerätes an.
- Achten Sie darauf, dass nach jeder Aktion ein kurzzeitiger Ausschlag auf 20 mA erfolgt (Bestätigung der erfolgreichen Aktion).

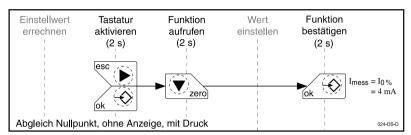
Ohne Anzeigeeinheit können Sie folgende Funktionen des Gerätes parametrieren:

- Abgleich des Nullpunktes mit oder ohne Befüllung des Behälters (= mit/ohne Druck)
- Abgleich der Messspanne mit oder ohne Befüllung des Behälters (= mit/ohne Druck)
- Integrationszeit
- Reset der werkseitigen Geräteeinstellungen

Falls Nullpunkt oder Spanneeinstellung beim Abgleich mit Druck außerhalb des Nenndruckbereiches des Sensors liegen, erfolgt eine Fehlermeldung über einen Stromsprung (21 mA oder 3,6 mA; 5 sec) nach der Betätigung. Es werden keine Werte gespeichert.

Wird keine Taste bedient, wird die Tastatur nach 10 Minuten inaktiv. Die Einstellungen fallen dann auf die zuletzt gespeicherten Werte zurück. Einstellungen, die nicht mit "ok" bestätigt werden, sind nicht gespeichert.

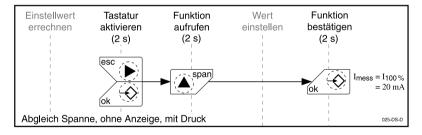
5.2 Die Tastatur und ihre Funktionen (nur für Geräte ohne Display)


Funk	tion 1	Funk	tion 2
span	Grundstellung Spanne abspeichern (2 s)	span	Aktion: aufwärts, Wert vergrößern
zero	Grundstellung Nullpunkt abspeichern (2 s)	zero	Aktion: abwärts, Wert verkleinern
esc	Tastatur bzw. Parametriermodus Verlassen (2 s)	esc ok	Tastatur aktivieren (gleichzeitig betäti- gen; 2 s)
ok Ok	Bestätigung (Speichern 2 s)	esc	Lagekorrektur der Messzelle (gleich- zeitig betätigen 2 s)
span	Grundstellung Integrationszeit/ Dämpfung (gleich- zeitig betätigen; 2 s)	esc D	Reset auf Werks- einstellung (gleich- zeitig betätigen; 2 s)

5.3 Abgleich mit Druck

5.3.1 Abgleich des Nullpunktes

Stellen Sie vor dem Abgleich sicher, dass am Drucktransmitter der Druck ansteht, den Sie als Nullpunkt (P 0 %) festlegen wollen.



5.3.2 Abgleich der Spanne

Einstellen des Messbereichs (Spanne) bzw. des Messbereichsendpunktes

Stellen Sie sicher, dass am Drucktransmitter der Druck ansteht, den Sie als Endwert (P 100 %) festlegen wollen. Als Spanne wird der Messbereich zwischen Nullpunkt und Endwert abgespeichert.

Eine Änderung des Nullpunktes hat keinen Einfluss auf die eingestellte Spanne.

Falls jedoch durch Veränderung des Nullpunktes der Spannenendpunkt über dem Höchstwert des Nenndruckbereiches des Sensors läge, wird der Spannenendpunkt auf diesem Höchstwert festgehalten und die Spanne entsprechend reduziert.

Eine Änderung der Spanneneinstellung hat keinen Einfluss auf den Nullpunkt. Nullpunkt und Spannenendpunkt müssen innerhalb des Nenndruckbereichs des Sensors liegen.

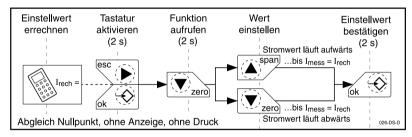
Beim Abgleich mit Druck (Nassabgleich) kann die Lagekorrektur entfallen, oder aber sie muss vor Abspeicherung von Nullpunkt und Spannenendpunkt erfolgen.

5.4 Abgleich ohne Druck

Bevor Sie mit dem Abgleich beginnen, müssen Sie erst den am Gerät einzustellenden Stromreferenzwert für Nullpunkt und Spanne ermitteln. Dazu gehen Sie wie folgt vor:

5.4.1 Abgleich des Nullpunkts

- Bestimmen Sie den hydrostatischen Druck der Flüssigkeitssäule, der Ihrem Nullniveau entspricht.
- Setzen Sie diesen Druck ins Verhältnis zum Nenndruckbereich des Sensors.
- Multiplizieren Sie dieses Verhältnis mit 16 mA und addieren 4 mA hinzu.


Jetzt erhalten Sie den rechnerischen Strom, Wert I_{rech}, den Sie am Gerät einstellen müssen, um Ihren Nullpunkt (0 %) zu parametrieren.

Beispiel:

Sie wollen einen Druckmessumformer mit 0 ... 400 mbar (Nenndruck) parametrieren. Ihre Flüssigkeitssäule (mit Dichte 1) steht am Nullpunkt 1 m über der Membran, erzeugt also einen Druck von 100 mbar.

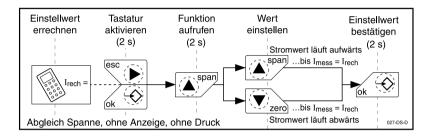
$$I_{rech} = \frac{\text{Druck am Nullpunkt (0 \%) 100 mbar}}{\text{Nenndruck des Sensors 400 mbar}} \cdot 16 \text{ mA} + 4 \text{ mA} = 8 \text{ mA}$$

Das bedeutet, dass Sie den Stromwert des Gerätes beim Trockenabgleich auf 8 mA setzen müssen.

5.4.2 Abgleich der Spanne

- Bestimmen Sie den hydrostatischen Druck der Flüssigkeitssäule, der Ihrem Spannenendwert entspricht.
- Setzen Sie diesen Druck ins Verhältnis zum Nenndruckbereich des Sensors.
- Multiplizieren Sie dieses Verhältnis mit 16 mA und addieren 4 mA hinzu.

Jetzt erhalten Sie den rechnerischen Strom, Wert $I_{\rm rech}$, den Sie am Gerät einstellen müssen, um Ihre Spanne zu parametrieren.


Als Spanne wird der Messbereich zwischen Nullpunkt und Spannenendpunkt abgespeichert.

Beispiel:

Sie wollen einen Drucktransmitter mit 0 ... 400 mbar (Nenndruck) parametrieren. Ihre Flüssigkeitssäule (mit Dichte 1) steht am Nullpunkt 1 m über der Membran, das Maximum (Spannenendpunkt) soll bei 3 m liegen. Der Messbereich (Spanne) beträgt also 200 mbar.

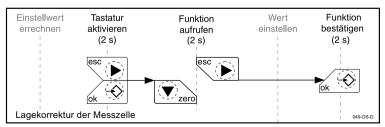
$$I_{rech} = \frac{\text{Druckdifferenz (Spanne) (300 mbar - 100 mbar)}}{\text{Nenndruck des Sensors 400 mbar}} \cdot 16 \text{ mA} + 4 \text{ mA} = 12 \text{ mA}$$

Das bedeutet, dass Sie den Ausgang bei der Parametrierung auf 12 mA setzen müsen.

Eine Änderung des Nullpunktes hat keinen Einfluss auf die eingestellte Spanne.

Falls jedoch durch Veränderung des Nullpunktes der Spannenendpunkt über dem Höchstwert des Nenndruckbereiches des Transmitters läge, wird der Spannenendpunkt auf diesem Höchstwert festgehalten und die Spanne entsprechend reduziert.

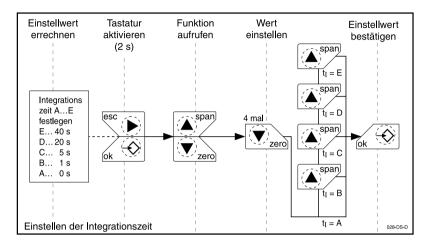
Eine Änderung der Spanneneinstellung hat keinen Einfluss auf den Nullpunkt. Nullpunkt und Spannenendpunkt müssen innerhalb des Nenndruckbereichs des Transmitters liegen.

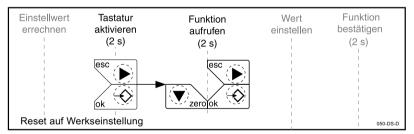


Um die optimale Genauigkeit zu erhalten wird nach der Spanneneinstellung eine Nullpunktüberprüfung / Korrektur empfohlen.

Beim Abgleich ohne Druck (Trockenabgleich) sollte vor oder nach dem Abgleich eine Lagekorrektur des Sensors durchgeführt werden (siehe Abschnitt 5.4.3). Der Sensor muss dazu in die Bezugslage für die Messung (Einbaulage) gebracht werden und drucklos sein.

5.4.3 Lagekorrektur der Messzelle


Die Lage der Messzelle wird durch gleichzeitiges Drücken (2 s) der Tasten "zero" und


Ausgabedatum 16.2.04

"esc" eingegeben

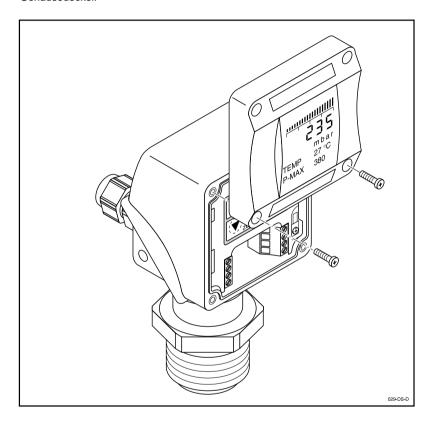
5.5 Einstellen der Integrationszeit (Dämpfung)

Sie können unter folgenden Integrationszeiten einstellen: 0, 1, 5, 20 und 40 s. Damit werden die am Sensor anstehenden Messwerte über die eingestellte Integrationszeit gemittelt.

5.6 Reset auf Werkseinstellung

Die Daten der werksseitigen Parametrierung werden durch gleichzeitiges Drücken (2 s) der Tasten "zero", "esc" und "ok" wiederhergestellt (siehe Kapitel 6.4)

Sondermessbereiche z.B. 4 bar bei einem 6 bar Transmitter werden durch einen werksseitig eingestellten Turn down erzielt. Bei Reset wird der entsprechende Grundbereich (im Bsp. 6 bar) wieder eingestellt.


Die werksseitige Einstellung des Sondermessbereiches geht hierbei verloren.

6 Inbetriebnahme von Geräten mit Anzeige

6.1 Die Anzeige (Display)

Zum Parametrieren (Programmieren) des Gerätes schrauben Sie mit einem Schraubendreher das Display ab und fixieren es, wie in der Abbildung dargestellt, wieder am Gehäusedeckel.

6.2 Die Tastatur und ihre Funktionen

Taste	Funktionen												
	Hauptmenü	Untermenü	Editierebene										
span	zurück zum voran- gegangenen Menü- punkt	zurück zum voran- gegangenen Menü- punkt	Wert erhöhen										
zero	vor zum nächsten Menüpunkt	vor zum nächsten Menüpunkt	Wert verringern										
esc	zurück zur Messwert- anzeige ohne zu spei- chern	zurück ins Haupt- menü ohne zu speichern	zurück ohne zu spei- chern										
ok Ok	zum Untermenü	zur Editierebene	Wert speichern										
esc ok	Tastatur aktivieren (gle	ichzeitig betätigen; 2 s)											

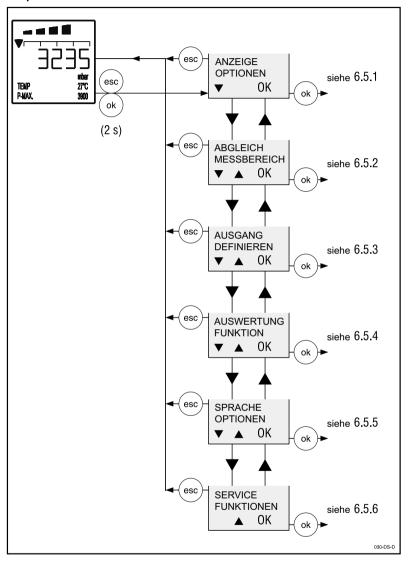
6.3 Der Parametriermodus

Das Gerät kann in ein- und ausgebautem Zustand parametriert werden.

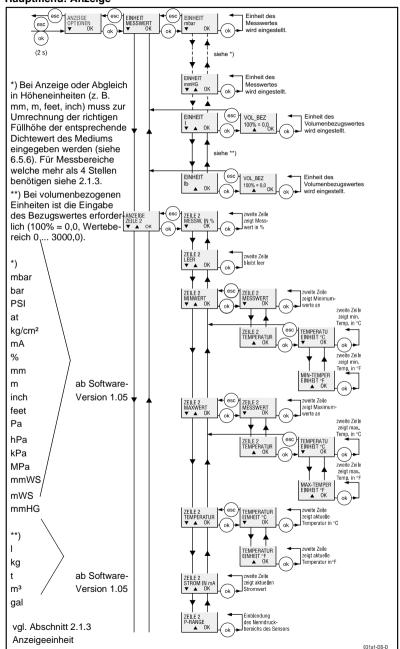
Durch gleichzeitiges Drücken der Tasten "esc" und "ok" (2 s) wird die Tastatur aktiviert und das Parametrieren des Gerätes ermöglicht. Von der Messwertanzeige gelangt man so zu den Hauptmenüs. Jedes Hauptmenü hat ein oder mehrere Untermenüs, z. T. mit weiteren Untermenüs.

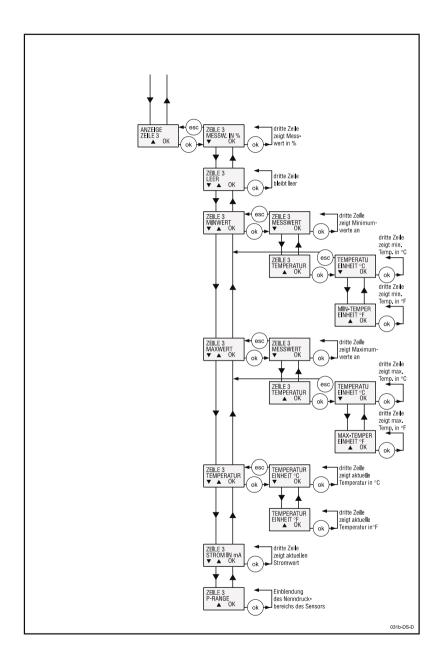
Wird 10 min. lang keine Taste bedient, wird die Tastatur inaktiv. Die Einstellungen fallen dann auf die zuletzt gespeicherten Werte zurück. Einstellungen, die nicht mit "ok" bestätigt werden, sind nicht gespeichert. Eine Veränderung des Messanfangs (Nullpunktes) hat keinen Einfluss auf die Messspanne. Ebenso hat eine Veränderung der Spanne keinen Einfluss auf den Messanfang.

Falls Nullpunkt oder Spanneneinstellung beim Abgleich unter Druckbeaufschlagung außerhalb des Nenndruckbereiches des Sensors liegen, erfolgt eine Fehlermeldung nach Bestätigung der Einstellung. Es werden keine Werte gespeichert.

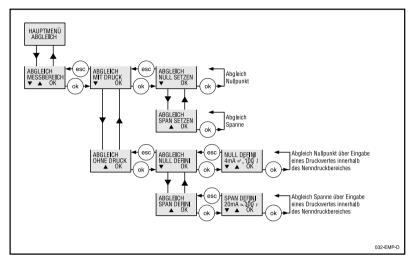

6.4 Daten der Werkseinstellung

Funktion		Werkseinstellung						
Anzeige	Einheit des Messwertes (Zeile 1)	Druckanzeige (in bar)						
	Zeile 2	Temperaturanzeige (in °C)						
	Zeile 3	Nenndruckbereich des Sensors (in bar)						
Abgleich	zero 4 mA	Nenndruckbereich Anfang						
	span 20 mA	Nenndruckbereich Ende						
Ausgang	Dämpfung	0 s						
	Invertierung	nein						
	Störung	21 mA (upscale)						
	Grenzen	3,8 20,5 mA						
	I-Offset	0 mA						
Service Pass	swort	kein Passwort aktiviert						
Service Lage	ekorrektur	nicht aktiviert						
Sprache		englisch						
Auswertung	linear	ja						
	Dichte	1 g/cm ³						




Sondermessbereiche z.B. 4 bar bei einem 6 bar Transmitter werden durch einen werksseitig eingestellten Turn down erzielt. Bei Reset wird der entsprechende Grundbereich (im Bsp. 6 bar) wieder eingestellt. Die werksseitige Einstellung des Sondermessbereiches geht hierbei verloren.

6.5 Hauptmenü

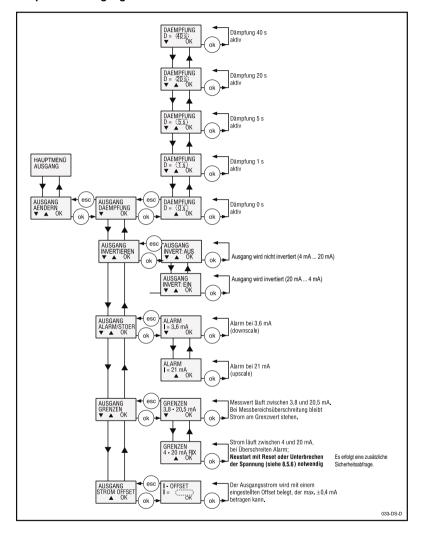


6.5.1 Hauptmenü: Anzeige

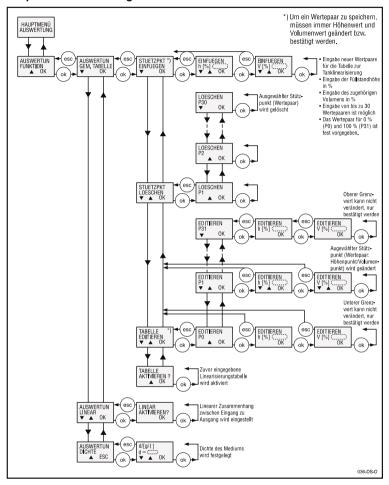
6.5.2 Hauptmenü: Abgleich (Nullpunkt und Spanne)

Beim Abgleich mit Druck wird für den Nullpunkt bzw. Spannenendpunkt jeweils ein Druckwert innerhalb des Nenndruckbereiches des Sensors eingestellt und dem zugehörigen Ausgangsstromsignal zugeordnet. Falls der anliegende Druck außerhalb des Nenndruckbereichs des Sensors liegt, erfolgt eine Fehlermeldung. Der Wert wird dann nicht gespeichert.

Beim Abgleich ohne Druck (Trockenabgleich) sollte vor oder nach dem Abgleich eine Lagekorrektur des Sensors durchgeführt werden (siehe 6.5.6). Der Sensor muss dazu in die Bezugslage für die Messung (Einbaulage) gebracht werden und drucklos sein.



Beim Abgleich mit Druck (Nassabgleich) kann die Lagekorrektur entfallen, oder aber sie muss vor Abspeicherung von Nullpunkt und Spannenendpunkt erfolgen.



Um die optimale Genauigkeit zu erzielen, wird nach der Spanneneinstellung eine Nullpunktüberprüfung und evtl. eine Nullpunktkorrektur empfohlen.

6.5.3 Hauptmenü: Ausgang

6.5.4 Hauptmenü: Auswertung

Zur Tanklinearisierung geben Sie Höhenpunkte ein, denen je ein Volumenwert zugeordnet wird. Mit Hilfe dieser Wertepaare werden eine Linearisierung und die Zuordnung des 4 ... 20 mA-Ausgangssignals zum Tankvolumen errechnet.

Das Aktivieren der Auswertungsfunktion setzt den Turn down ausser Kraft!

Erscheint im Menü Auswertung "FALSCHE EINGABE", dann überprüfen Sie bitte

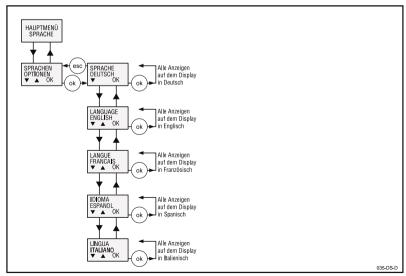
- ob Sie mehr als 32 Wertepaare in Ihre Tabelle zur Tanklinearisierung einfügen wollten (bitte beachten: P 0 und P 31 liegen fest bei 0 % und 100 %)
- ob Sie einen bereits bestehenden Höhenpunkt erneut eingeben wollten und korrigieren Sie die Eingaben.

Beispiel:

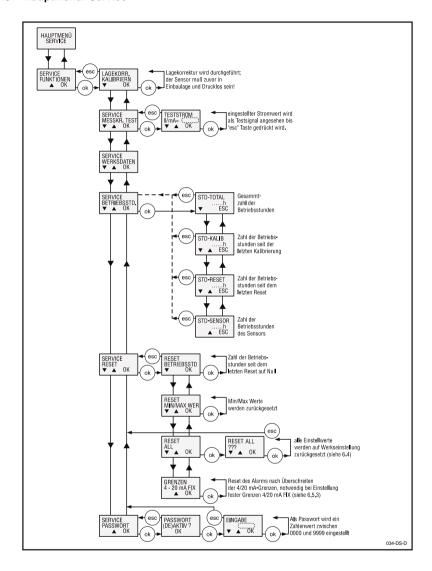
Füllstand 100 %: 4000 mm

Dichte: 1 g/cm³

Dichtekorrektur: 0,9 g/cm³


Spannenendpunkt: $\frac{4000 \text{ mm} \cdot 1 \text{ g/cm}^3}{0.9 \text{ g/cm}^3} = 4444 \text{ mm}$

Um das Überfüllen eines Tanks mit 4000 mm Höhe zu vermeiden, muss über einen neuen Abgleich (mit oder ohne Druck) der Spannenendpunkt wieder auf 4000 mm korrigiert werden.



Bei einer Korrektur oder Änderung des Dichtewertes ändern sich bei abhängigen Messgrößen (mm, m, inch, feet) auch die zugehörigen Werte des Spannenendpunktes. Unter Umständen muss bei Medienwechsel (Dichteänderung) ein neuer Abgleich des Spannenendpunktes erfolgen.

6.5.5 Hauptmenü: Sprache

6.5.6 Hauptmenü: Service

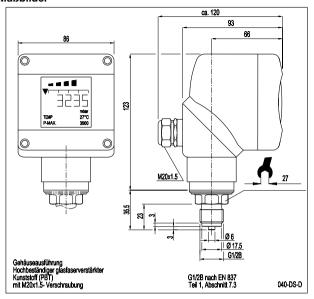
7 Fehlersuche und Service

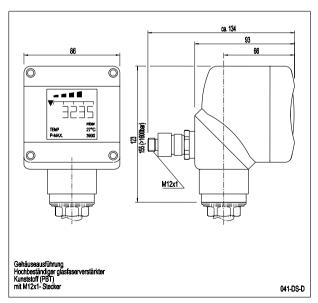
Können Störungen nicht beseitigt werden, ist das Gerät außer Betrieb zu setzen und gegen versehentliche Inbetriebnahme zu schützen. Reparaturen dürfen nur vom Hersteller durchgeführt werden. Eingriffe und Änderungen am Gerät sind unzulässig.

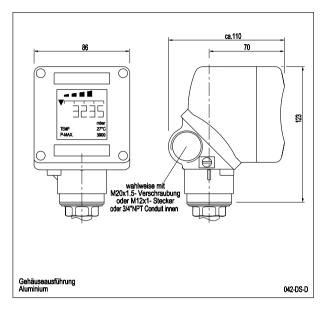
Auf Geräten mit Display können folgende Fehlermeldungen erscheinen (siehe Kapitel 2.1.3):

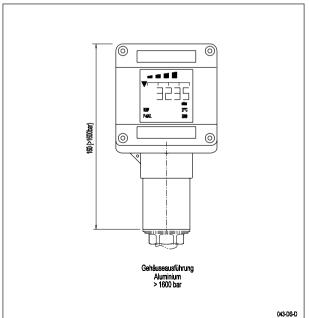
Fehlercode	Fehlerart	Maßnahmen zur Fehlerbeseitigung
E00	ROM-Fehler	Gerät zum Hersteller-Service
E01	Fehler Versorgungsspannung	Spannungsversorgung prüfen
E03	Kommunikationsfehler E ² PROM	Versorgungsspannung abklemmen und wieder anklemmen
E04	Temperaturbereich Sensor überschritten	Sensortemperatur in Spezifikationsgrenzen zurückbringen
E06	Fehler Sensorerkennung	Versorgungsspannung abklemmen und wieder anklemmen
E07	allgemeiner Fehler Kommu- nikation zwischen Sensor und Auswerteeinheit	Steckverbindungen zwischen Sensor und Auswerteeinheit prüfen
E08	Fehler E ² PROM	Gerät zum Hersteller-Service

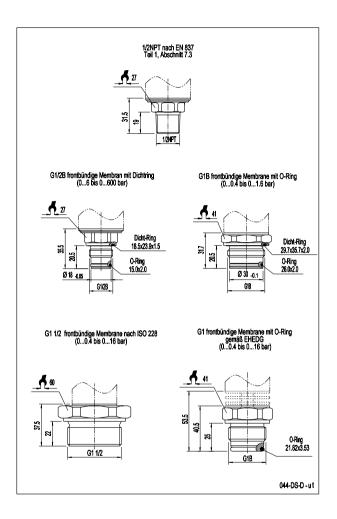
8 **Entsorgung**

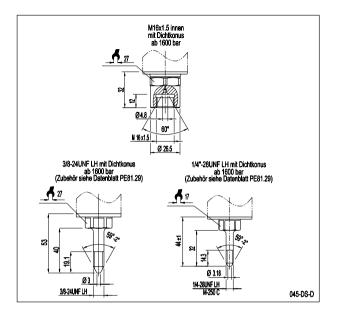


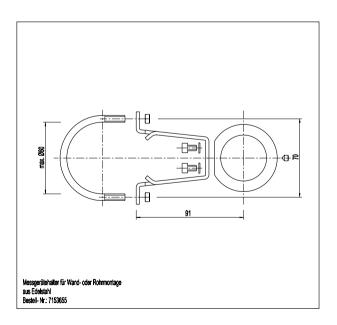

Beachten Sie bei der Entsorgung ausgedienter Geräte die dann gültigen gesetzlichen und kommunalen Vorschriften.


Wichtig Führen Sie recyclingfähige Teile der Wiederverwertung zu.


9 Anhang


9.1 Maßbilder





Universaltransmitter UniTrans Anhang

9.2 Typenschlüssel

			Einheit												
		В	bar												
1		S	bar absolu	ut		bis 16 bar abs									
			Messbere	eich											
		CA	-1 bar 0) bar	вм	0 bar 40 bar									
		CD	-1 bar 0),6 bar	во	0 bar 100 bar									
		СН	-1 bar 3	3 bar	BQ	0 bar 250 bar									
		СК	-1 bar 5	5 bar	вт	0 bar 600 bar									
		СР	-1 bar 1	15 bar	BU	0 bar 1000 bar									
		ВВ	0 bar 0	,4 bar / bar absolut	в٧	0 bar 1600 bar ¹⁾									
		BE	0 bar 1	,6 bar / bar absolut	вх	0 bar 2500 bar ¹⁾									
		вн	0 bar 6	bar / bar absolut	BZ	0 bar 4000 bar ¹⁾									
2		вк	0 bar 10	6 bar / bar absolut											
			Prozessa	nschluss											
		GD	G ½ B												
		ND	½ NPT												
		ML	M16 x 1,5	innen, mit Dichtkonus ²⁾		ab 1600 bar									
		٧S	3/8-24 UN	IF LH außen		ab 1600 bar									
3		cs	Druckmittl	ler Pre	ise ur	nd Ausführungen siehe Druckmittlerprogramm									
			Besonde	rheit in der Ausführung											
		Z	ohne												
		Е	Besonderheit in der Ausführung ohne öl- und fettfrei Sauerstoff, öl- und fettfrei bis 1600 bar abs, maximale Messstofftemperatur 60°C lebensmitteltaugliche Ausführung Überspannungsschutz nach IEC 801-5 Gehäusewerkstoff Hochbeständiger glasfaserverstärkter Kunststoff (PBT)												
		Α	öl- und fettfrei Sauerstoff, öl- und fettfrei bis 1600 bar abs, maximale Messstofftemperatur 60°C lebensmitteltaugliche Ausführung Überspannungsschutz nach IEC 801-5												
	-	G	lebensmit	teltaugliche Ausführung											
4		0	Überspan	nungsschutz nach IEC 801-5											
			Gehäuse	werkstoff											
	-	M	Hochbest	ändiger glasfaserverstärkter Kunststoff	(PBT)									
5		Α	Aluminium	n		Schutzart IP 67									
	i		Elektrisc	her Anschluss											
	7	Α		chraubung M20x1,5 mit innenliegende	m Kle	mmblock									
6		M	Rundsteck	kverbinder M12x1, 4-polig											
	í		Digitalan	zeige											
	1	Z	ohne												
7		Α	·	erter 4-stelliger LCD-Anzeige											
	ĺ		Zulassun	gen											
	1	Z	ohne												
8		?	andere												
				estellangaben											
_	1	JA	NEIN												
9		1	Z	Zeugnisse / Bescheinigungen											
10		Т	Z	Zusatztext											

- 1) nur mit Kennlinienabweichung 0,5 %; max. Turn down 2:1; nur mit Gehäusewerkstoff" Aluminium Code A
- Bitte beachten Sie den max. zulässigen Druck für die von Ihnen verwendeten Hochdruckrohre (siehe Angaben des Hochdruckrohr-Herstellers)

Bestellcode:

	1	2	3		•	5		6	•	•		9	10	16.2.0
UT-10 - A -		-		-			S				-			bedatum

Universaltransmitter UniTrans Anhang

	_		Einheit									
	. [В	bar									
1		s	bar abso	lut				bis16 bar abs				
	_		Messbe	reich								
		CA	-1 bar	0 bar	ВН	0 bar	6 bar / bar absolut					
		CD	-1 bar	0,6 bar	ВК	0 bar	16 bar / bar absolut					
		СН	-1 bar	3 bar	ВМ	0 bar	40 bar					
		СК	-1 bar	5 bar	во	0 bar	100 bar					
		СР	-1 bar	15 bar	BQ	0 bar	250 bar					
	. [ВВ	0 bar	0,4 bar / bar absolut	ВТ	0 bar	600 bar					
2		BE	0 bar	1,6 bar / bar absolut								
			Prozess	anschluss								
	Ī	85	G 1 B fro	ontbündig mit O-Ring				bis 1,6 bar				
	Ī	86	G ½ B fr	ontbündig mit O-Ring				> 1,6 bar				
	Ī	G6	G 1 ½ B	frontbündig				bis 16 bar				
	Ī	83	G 1 from	tbündig gemäß EHEDG 1)				bis 16 bar				
3		84		tbündig bis +150 °C gemäß EHE	DG ¹⁾			bis 16 bar				
				offberührte Bauteile								
	Ī	1	CrNi-Sta	hl und O-Ring aus NBR								
	Ī	L	CrNi-Sta	hl und O-Ring aus FPM/FKM								
		В	CrNi-Sta	hl und O-Ring aus EPDM								
4		s	Hastello	y C4								
			Besond	erheit in der Ausführung								
		Z	ohne									
	Ī	Ε										
	Ī	Α	i Sauerstoff, öl- und fettfrei bis 100 ba. I lebensmitteltaugliche Ausführung nicht bei Prozessanschluss Code 83 und 84, bereits integrier									
		G										
5		0	Überspa	nnungsschutz nach IEC 801-5								
			Gehäus	ewerkstoff								
	Ī	М	Hochbes	ständiger glasfaserverstärkter Ku	unststoff (PBT)						
6		Α	Aluminiu	ım				Schutzart IP 67				
			Elektris	cher Anschluss								
	Ī	Α	Kabelve	rschraubung M20x1,5 mit innenl	iegendem Kle	mmblock	(
7		M	Rundste	ckverbinder M12x1, 4-polig								
			Digitala	nzeige								
	Ī	Z	ohne									
8		Α	mit integ	rierter 4-stelliger LCD-Anzeige								
			Zulassu	ngen								
	Ī	Z	ohne									
9		?	andere									
		Zus	itzliche E	Bestellangaben								
	ſ	JA	NEIN									
0] [1	Z	Zeugnisse / Bescheinigungen								
1		Т	Z	Zusatztext								
			Z Zusatztext									

1) nicht mit "Besonderheit in der Ausführung" Code A

Bestellcode:

				1	2		3		4	5	6		7	8	9		10	11	
UT-11	-	A	- [-		-				s				-			

9.3 Garantiebedingungen

Die Garantiezeit für den Drucktransmitter beträgt 24 Monate gemäß den Allgemeinen Lieferbedingungen von WIKA.

Reparaturen dürfen nur vom Hersteller durchgeführt werden. Eingriffe und Änderungen am Gerät sind unzulässig. Sie führen zum Verlust jeglicher Garantie.

9.4 Glossar

Abgleich Zuordnung des Signalausgangsbereiches (4 ... 20 mA) zum

gewünschten Druckmessbereich bzw. Füllstandmessbereich

auch Dämpfung: zeitliche Mittelung des Messsignals; Ein-Integration

schwingzeit des Stromausgangssignals nach einem Signal-

sprung

Invertieruna Umstellung des Ausgangssignals von 4 ... 20 mA auf 20 ... 4 mA

Nenndruckbereich Arbeitsdruckbereich, für den das jeweilige Sensorelement aus-

gelegt ist

Nullpunkt Messanfang des Druckmessbereichs

Parametrieren auch Konfigurieren, Programmieren: Eingeben der für die

jeweilige Anwendung und Messstelle relevanten Parameter

und Geräteeinstellungen

Spanne eingestellter Druckmessbereich

Spannenendwert oberer Druckwert der eingestellten Messspanne (Endpunkt der

Spanne)

Tanklinearisierung Festlegen von Näherungswerten für das Volumen-/Druck-

verhältnis bei nicht linearen Zusammenhängen aufgrund ver-

schiedener Behälterformen.

Bei z.B. kugelförmigen Behältern besteht ein nichtlinearer Zusammenhang zwischen Füllhöhe und Füllmenge. Bei der Linearisierung wird über eine Wertetabelle die nichtlineare Füllmenge dem 4 ... 20 mA - Ausgangssignal zugeordnet

(Näherungsverfahren über bis zu 32 Stützpunkte).

Werkseinstellung vom Hersteller vorprogrammierte Parameter des Messgerätes

Referenzliste der Druckeinheiten 9.5

1 atm (Atmosphäre) = 760 mm Hg = 760 Torr

 $= 1.033 \text{ kp/cm}^2 = 0.1013 \text{ MPa}$

1 Torr = 133.3 Pa

1 kp/mm² $= 9.81 \text{ N/mm}^2 = 9.81 \text{ MPa}$

1 bar = 0.1 MPa

= 1 hPa (Hektopascal) 1 mbar

 $= 6.895 \cdot 10^3 \text{ Pa}$ 1 psi (pound per square inch) $= 1.000 \cdot 10^{-5} \text{ bar}$ 1 Pa

1 mmHG

= 1,333 mbar