Raum-/Außen-Widerstandsthermometer Typ TR60

WIKA Datenblatt TE 60.60

weitere Zulassungen siehe Seite 2

Anwendungen

- Zur Erfassung von Umgebungstemperaturen
- Klimatisierte Räume, Kühlräume, Lagerhallen, Getreidelagerung, Keimböden etc.

Leistungsmerkmale

- Sensorbereiche von -40 ... +80 °C (-40 ... +176 °F)
- Transmitter optional möglich
- Schlagfestes Kunststoffgehäuse
- Explosionsgeschützte Ausführungen

Beschreibung

Außen-Widerstandsthermometer

Diese Ausführung ist durch ein geschlossenes Fühlerrohr gekennzeichnet und für feuchte Räume und Freiluftaufstellung vorgesehen. Für den Einsatz in explosionsgefährdeten Bereichen stehen eigensichere Ausführungen zur Verfügung.

Raum-Widerstandsthermometer

Diese Ausführung ist für trockene Räume vorgesehen. Das Fühlerrohr ist im Bereich des Sensors perforiert. Aufgrund der Perforation steht der Sensor direkt mit der Umgebungsluft in Kontakt. Dadurch wird die Ansprechgeschwindigkeit deutlich verbessert.

Komplettiert wird das Spektrum der Anwendungen durch den optionalen Einbau von analogen oder digitalen Transmittern.

Abb. links: Außen-Widerstandsthermometer Abb. rechts: Raum-Widerstandsthermometer

Seite 1 von 7

Explosionsschutz (Option, nur bei Außen-Widerstandsthermometer)

Die zulässige Leistung P_{max} sowie die zulässige Umgebungstemperatur für die jeweilige Kategorie der EG-Baumusterprüfbescheinigung bzw. dem Ex-Zertifikat oder der Betriebsanleitung entnehmen.

Eingebaute Transmitter haben eine eigene EG-Baumusterprüfbescheinigung. Die zulässigen Umgebungstemperaturbereiche der eingebauten Transmitter sind der entsprechenden Transmitterzulassung zu entnehmen. Der Betreiber ist für den Einsatz von geeigneten Schutzrohren verantwortlich.

Zulassungen (Explosionsschutz, weitere Zulassungen)

Logo	Beschreibung		Land
C€	EU-Konformitätserklärung ■ EMV-Richtlinie 1) EN 61326 Emission (Gruppe 1, 1	Europäische Union	
	■ RoHS-Richtlinie		
€ €	 ATEX-Richtlinie (Option) ²⁾ Explosionsgefährdete Bereiche Ex i Zone 1 Gas Zone 21 Staub 	[II 2G Ex ia IIC T1 T6 Gb] [II 2D Ex ia IIIC T125 T65 °C Db]	
IEC IECEX	IECEx (Option) ²⁾ (in Verbindung mit ATEX) Explosionsgefährdete Bereiche - Ex i Zone 1 Gas Zone 21 Staub	[Ex ia IIC T1 T6 Gb] [Ex ia IIIC T125 T65 °C Db]	International
EHLEx	EAC (Option) ²⁾ Explosionsgefährdete Bereiche - Ex i Zone 1 Gas Zone 21 Staub	[1 Ex ib IIC T3/T4/T5/T6] [DIP A21 Ta 65 °C/Ta 95 °C/Ta 125 °C]	Eurasische Wirtschaftsgemeinschaft
IMMETRO	INMETRO (Option) ²⁾ Explosionsgefährdete Bereiche - Ex i Zone 1 Gas Zone 21 Staub	[Ex ib IIC T3 T6 Gb] [Ex ib IIIC T125 T65 °C Db]	Brasilien
Ex NEPSI	NEPSI (Option) ²⁾ Explosionsgefährdete Bereiche - Ex i Zone 1 Gas	[Ex ib IIC T3 ~ T6]	China
C s	KCs - KOSHA (Option) ²⁾ Explosionsgefährdete Bereiche - Ex i Zone 1 Gas	[Ex ib IIC T4 T6]	Südkorea
-	PESO (Option) ²⁾ Explosionsgefährdete Bereiche - Ex i Zone 1 Gas	[Ex ib IIC T3 T6 Gb]	Indien
	DNOP - MakNII (Option) 2) Explosionsgefährdete Bereiche - Ex i Zone 21 Staub	[II 2D Ex ib IIIC T125 T65 °C Db]	Ukraine

¹⁾ Nur bei eingebautem Transmitter

Nur bei Außen-Widerstandsthermometer

Logo	Beschreibung	Land
©	GOST (Option) Metrologie, Messtechnik	Russland
ß	KazInMetr (Option) Metrologie, Messtechnik	Kasachstan
-	MTSCHS (Option) Genehmigung zur Inbetriebnahme	Kasachstan
(BelGIM (Option) Metrologie, Messtechnik	Weißrussland
•	UkrSEPRO (Option) Metrologie, Messtechnik	Ukraine
	Uzstandard (Option) Metrologie, Messtechnik	Usbekistan

Mit "ia" gekennzeichnete Geräte dürfen auch in Bereichen eingesetzt werden, welche nur "ib" oder "ic" gekennzeichnete Geräte erfordern. Wird ein Gerät mit Kennzeichnung "ia" in einem Bereich mit Anforderungen nach "ib" oder "ic" eingesetzt, darf es anschließend nicht mehr in Bereichen mit Anforderungen nach "ia" betrieben werden.

Zulassungen und Zertifikate siehe Internetseite

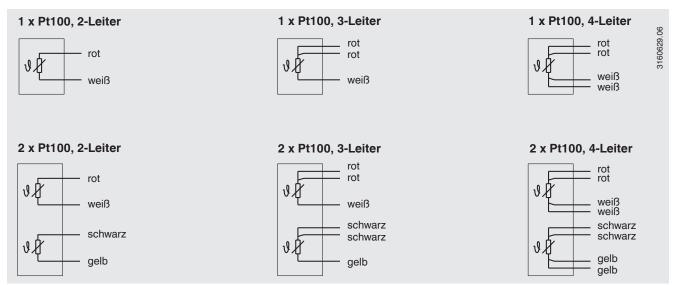
Sensor

Messelement

Pt100, Pt1000 $^{1)}$ (Messstrom: 0,1 ... 1,0 mA) $^{2)}$

Schaltungsart			
Einfach-Elemente	1 x 2-Leiter 1 x 3-Leiter 1 x 4-Leiter		
Doppel-Elemente	2 x 2-Leiter 2 x 3-Leiter 2 x 4-Leiter ³⁾		

Genauigkeitsklasse / Einsatzbereich des Sensors nach EN 60751				
Klasse	Sensorbauart			
	Drahtgewickelt	Dünnschicht		
Klasse B	-196 +600 °C -196 +450 °C	-50 +500 °C -50 +250 °C		
Klasse A 4)	-100 +450 °C	-30 +300 °C		
Klasse AA 4)	-50 +250 °C	0 150 °C		


¹⁾ Pt1000 nur als Dünnschicht-Messwiderstand erhältlich

Die Tabelle zeigt die in der jeweiligen Norm aufgeführten Temperaturbereiche, in denen die Grenzabweichungen (Klassengenauigkeiten) gültig sind.

Bauartbedingt ist der tatsächliche Einsatzbereich des Widerstandsthermometers auf -40 ... +80 °C eingeschränkt.

Elektrischer Anschluss (Farbcode nach IEC/EN 60751)

Anschlussklemmen im Gehäuse

Die elektrischen Anschlüsse eingebauter Temperaturtransmitter den entsprechenden Datenblättern bzw. Betriebsanleitungen entnehmen.

²⁾ Detaillierte Angaben zu Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de. 3) Nicht bei Durchmesser 3 mm

⁴⁾ Nicht bei Schaltungsart 2-Leiter

Fühler

Der Fühler hat standardmäßig einen Durchmesser von 6 mm und ist mit 1 x Pt100 oder 2 x Pt100 in 2-Leiter-, 3-Leiteroder 4-Leiter-Schaltung lieferbar.

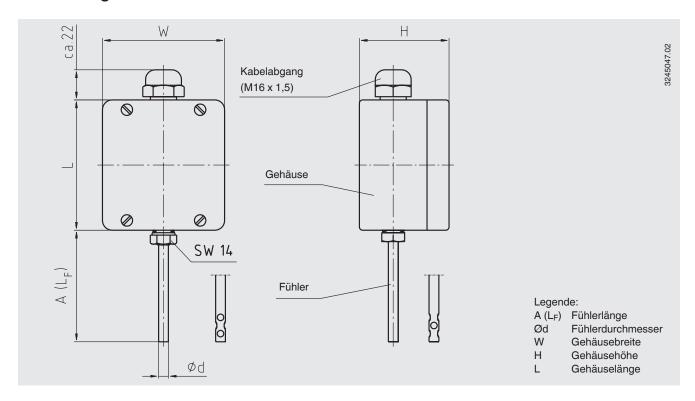
Technische Daten

Technische Daten	Außen-Widerstandsthermometer	Raum-Widerstandsthermometer
Fühler		
Ausführung	Starres Rohr, geschlossen	Starres Rohr, perforiert im Bereich des Sensors
■ Werkstoff	CrNi-Stahl 1.4571	CrNi-Stahl 1.4571
■ Fühlerlänge	60 mm ¹⁾	60 mm ¹⁾
■ Fühlerdurchmesser	6 mm ¹⁾	6 mm ¹⁾
Gehäuse		
Ausführung	Zur Wandmontage	Zur Wandmontage
■ Werkstoff	ABS-Kunststoff oder Aluminium	ABS-Kunststoff oder Aluminium
■ Maße	siehe "Abmessungen in mm" 1)	siehe "Abmessungen in mm" 1)
Kabelabgang	M16 x 1,5 1)	M16 x 1,5 1)
Zulässige Temperaturbereiche		
Umgebungstemperatur	-40 +80 °C ²⁾	-40 +80 °C ²⁾
■ Lagertemperatur	-40 +80 °C	-40 +80 °C
Schutzart	IP65 nach IEC/EN 60529	IP20 nach IEC/EN 60529
Gewicht	ca. 0,4 kg	ca. 0,4 kg

¹⁾ Andere auf Anfrage 2) Die Gebrauchstemperatur des Raum-Widerstandsthermometers wird begrenzt durch die zulässige Umgebungstemperatur des Gehäuses.

Transmitter (Option)

Ein Transmitter kann in das Gehäuse eingebaut werden. Dabei wird der Transmitter anstelle der Anschlussklemmen montiert.



Ausgangssignal 4 20 mA, HART®-Protokoll, FOUNDATION™ Fieldbus und PROFIBUS® PA				
Transmitter (auswählbare Ausführungen)	Typ T15	Typ T32	Typ T53	
Datenblatt	TE 15.01	TE 32.04	TE 53.01	
Ausgang				
■ 4 20 mA	Х	X		
■ HART®-Protokoll		Х		
■ FOUNDATION™ Fieldbus und PROFIBUS® PA			X	
Schaltungsart				
■ 1 x 2-Leiter, 3-Leiter oder 4-Leiter	Х	Х	X	
Messstrom	< 0,2 mA	< 0,3 mA	< 0,2 mA	
Explosionsschutz	Optional	Optional	Standard	

Abmessungen in mm

Gehäuse	Abmessungen in mm				
	L	W	Н	A (L _F)	Ød
Kunststoff (ABS)	82	80	55	60	6
Aluminium	80	75	57	60	6

Zertifikate/Zeugnisse (Option)

Zeugnisart	Mess- genauigkeit	Material- zertifikat
2.2-Werkszeugnis	х	х
3.1-Abnahmeprüfzeugnis 1)	х	х

¹⁾ Nur bei Außen-Widerstandsthermometer

Die verschiedenen Zeugnisse sind miteinander kombinierbar.

Bestellangaben

Typ / Fühlerausführung / Explosionsschutz / Gehäuse / Kabelabgang / Klemmsockel, Transmitter / Fühlerwerkstoff / Fühlerdurchmesser / Einbaulänge / Messelement / Schaltungsart / Temperaturbereich / Zeugnisse / Optionen

© 05/2008 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.
Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.
Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

WIKA Datenblatt TE 60.08 · 07/2018

Seite 7 von 7

info@wika.de www.wika.de